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ABSTRACT

1l--V- Results are given of a systematic series of

experiments in which the radius and pitch of propeller tip

vortices are measured and analyzed. The measurements of

ultimate wake pitch are compared with theoretical predictions

based both on a simple actvator disc model and on a

direct calculation of the self-induced velocities of the

helical vortices. The effect of wake deformation on the

computed radial distribution of pitch and camber is given

for a specific design example.
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NOMENCLATURE

CT = propeller thrust coefficient T
5pVA

2wR2

D = propeller diameter

f0/c = blade section camber/chord ratio

J = advance coefficient VA
nD

K = number of propeller blades

K = torgue coefficient Q
pn2D5

KT = thrust coefficient T

pn2D4

n = propeller rotational speed in revolutions/second

P = blade section pitch

P = pitch of trailing vortex sheet

P = pitch of trailing vortex sheet according to lifting
line theory

P w = pitch of trailing vortex in ultimate wake

Q = propeller torque

r = radial coordinate

rc = tip vortex core radius

RR  = radiut of curvature of helical vortex

RW  = radius of ultimate wake helix

T = propeller thrust

ua ,ut = axial, tangential induced velocities

Uat u = normalized axial and tangential induced velocities

Va = propeller speed of advance
VA

S8 = geometric edvance angle tan-  A
27rnr
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advance angle including induced velocities from
lifting-linfe theory

Ow  - advance angle of vortex ultimate wake

r - circulation

Ai  - advance coefficient tan0 i

n propeller efficiency KTJ
2wKQ

p = fluid mass density

W = propeller rotational speed in radians/second
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I. INTRODUCTION

A major obstacle in obtaining an "exact" numerical solution

of the flow around a three-dimensional lifting surface is the

difficulty in determining the position of the trailing vortex

wake. This problem has the usual difficulties associated

with boundary value problems with unknown boundaries, with the

additional complication of the essential role of viscosity

in the tip vortex core region.

It is fortunate that for many applications a precise

knowledge of the geometry of the trailing vortex wake is not

essential. The pressure distribution on a three-dimensional

planar hydrofoil can be accurately computed, in most cases,

with complete neglect of the deformation of the wake. Exceptions

to this statement include the determination of the pressure

distribution in the immediate vicinity of the tip, or the

analysis of low aspect ratio hydrofoils operating with vortex

sheet separation from the leading edge.

The problem is more complicated in the case of a propeller.

Here the trailing vortices follow a generally helical path

downstream, and the velocity which they induce on the blade

is significantly altered by a deformation in their trajectory.

For example, the velocity induced on one blade by the tip

vortex shed from the next blade ahead is roughly proportional

to the inverse of the minimum distance between the blade and

the vortex. This distance is significantly altered by the

combination of axial and radial deformation of the vortex.

This problem had been recognized in the earliest analytical

treatments of propeller theory, and the well-known represen-

tation of the "moderately loaded propeller" can be thought of
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as a deformed wake model [1], [2]. In this case, a very

simple deformation is introduced by modifying the pitch of

the trailing vortices to match the flow angle computed at a

lifting-line with the same radial circulation distribution

as the actual propeller. Since the trailing vortices shed

at different radii will not necessarily have the same pitch

the resulting vortex sheet for downstream will be of con-

tinuously changing form.

This model has had the enviable characteristic of getting

better with age. When first introduced, computer-aided numerical

lifting-surface theory was, of course, not available to determine

detailed propeller blade section characteristics for a prescribed

loading. Semi-empirical camber and pitch correction factors

were, of necessity, employed in determining blade section

shape [3], so that errors in the final result could not necessarily

be blamed on the wake model. As numerical lifting surface

theory progressed in accuracy [4], [5], [6], [7], correlation

between theory and experiment became excellent, even though

the classic "moderately-loaded" wake model was retained.

It is important to recognize, however, that this model

cannot properly represent flow conditions downstream of the

propeller. The author must admit falling into this trap in

developing a numerical procedure for computing propeller field

point velocities [8], [9]. Retention of the "moderately-

loaded" wake model, in this case, results in an oscillation in

the amplitude of the blade freqeuncy pressure with downstream

positions, while both experiment and pure linear theory yield

monotonically decreasing amplitudes. On the other hand,

correlation between theory and experiment near the propeller,

which is generally of primary importance, is extremely satisfactory.

One possible variation on the classical "moderately-loaded"

wake model was introduced by Burrill[10]. Recognizing that

the velocity induced by a helical vortex is doubled downstream,
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the pitch of the helical vortices shed from the blades was

appropriately increased. Since the Burrillprocedure, which

again pre-dated the introduction of digital computers, was

handicapped by possible inaccuracies in estimating lifting-

surface effects, the final result, as with [3], could not be

used to judge the effectiveness of the wake model.

One can conclude, therefore, that the "moderately-loaded"
wake model is evidently an effective "substitute vortex system"

for the purpose of determining the flow on or near the blade.

Viewed in this way, it does not matter whether or not the
substitute vortex system deviates significantly from the true

vortex wake downstream. Conversely, since it is a substitute,

it may lead to wrong answers if used for any other purpose.

Considerable effort has been directed in recent years

towards the determination of the true propeller wake geometry.

Since a concurrent survey paper by Cummings [11] reviews this

work, no attempt will be made here to duplicate this material,

except to state the general conclusion. Detailed numerical

computations of propeller vortex sheet deformations, while

within the realm of possibility for current computers, are

probably not worth the effort. At the present time, we are

unaware of the existence of any practical working programs for

this purpose.

We have therefore pursued a simpler approach which is

intermediate between the theory of moderately-loaded propellers

and a complete numerical determination of the wake geometry.
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II. THE ULTIMATE WAKE MODEL

Observations of propeller tip vortex trajectories in the

MIT Variable Pressure Water Tunnel tend to indicate that the

roll-up process must be extremely rapid. The slipstream

contracts behind the propeller to a constant value which is

maintained for the entire length of the test section downstream

of the propeller. If any significant amount of vortex roll-up

were taking place further downstream, this would be evidenced

by a continual change in radius and pitch. It seemed, therefore,

that rather than chasing vortices, it would be more efficient to

focus attention on the ultimate wake. The ultimate wake would consist

of a concentrated helical tip vortex shed from each blade, and

a hub vortex coincident with the shaft axis. Since we are

looking far downstream, these vortices can be regarded as infinite

in extent, so that the problem becomes effectively a two-

dimensional one.

The ultimate wake must be joined to the propeller by a

"transition wake" region, which is where the complex rolling-up

and contracting phenomenon takes plac.e. However, if this

region is limited in extent, it can be modelled with sufficient

accuracy by a smooth surface consisting of vortex lines shed

from the trailing edge and converging at the "roll-up points".

This concept is illustrated in Figure 1.

The development of this ultimate wake model was undertaken

by Loukakis [12], who developed analytical methods to determine
the ultimate wake radius and pitch, and ran a pilot experiment

in the water tunnel to measure these quantities. Good agreement

was found between theory and experiment. His results showed,
in particular, that the ultimate wake radius was practically

4



(0

0

Ld~

Ld) 0

w 0

L

04

a:,



independent of propeller loading and that the ultimate wake

pitch was less than that predicted by the theory of moderately-

loaded propellers. The latter tended to confirm, at least

qualitatively, the similar conclusion reached by Cummings [13].

The present research is directed towards the application

of this deformed wake model to design, and consists of three

parts:

1. A systematic series of measurements of ultimate

wake pitch and radius.

2. Correlation of these measurements with theory.

3. Modification of the existing propeller lifting-

surface program to include the computation of

induced velocities on the blade in accordance

with the present deformed wake model.
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III. EXPERIMENTAL PROGRAM

A. Performance Tests

A series of four three-bladed propellers were supplied

by DTNSRDC for the purpose of this study. The characteristics

of the propellers, which all have a pitch/diameter ratio of

approximately 1.07, are given in [14]. Figure 2, reproduced

from [14], shows the variations in blade outline covered by

the series.

In addition, a stock three-bladed motorboat propeller with

a pitch/diameter ratio of 0.67 was tested in order to obtain

data applicable to propellers with a lower design advance

coefficiel:t.

Measurements of thrust coefficient, KT , torque coefficient,

$KQ, and efficiency versus advance coefficient J , were made

in the MIT Variable Pressure Water Tunnel under non-cavitating

conditions. Following standard procedures, the test RPM was

adjusted to provide the highest Reynolds Number possible without

exceeding the capacity of the dynamometer or the maximum tunnel

flow speed. For these propellers, the range of RPM was from

1000 to 1800 , yielding Reynolds Numbers ranging from 2 X 106

to 3.5 x 106 .

Paired values of KT , KQ , and efficiency corrected for

tunnel wall effect at intervals of 0.1 in advance coefficient

are given in Tables 1-5. The results for the four series

propellers are generally in good agreement with the results of

the DTNSRDC open water tests (14].
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TABLE 1. FAIRED EXPERImEmrAL VALUES OF PROPELLER PERFORMANCE TABLE 2. PAIRED EXPERIMINTAL VALUES OF PROPELLER PERFO R
CORRECTED FOR TUNNEL WALL EFFECT FOR DTNSRDC PROPELLER 4118. CO CTED FOR TUNNEL WALL EFFLCT FOR DThSRDC PROPELLER 4132.

K r Q n .7 37 .012 .227

.2 .420 .0675 8 .2 .310 .0444 .333

.3 .391 .0618 .295 .9 .133 .046 .434

.4 .342 .0560 .389 1.0 .250 .0386 .526

1.0 .301 .001 .70.6 .26 .0314 .608

•.6 .257 .0440 .55l9 .7 .193 .032.1 .676

.7 .213 .0377 .620 .6 .163 .0285 .729

.8 .170 .0318 .682 .9133 .0246 .773

,9 .129 .0260 .714 1.0 .100 .01"9 .804

1.0 .086 .0195 .700 1.1 .064 .0142 .793

1.1 .040 .0126 .558 1.2 .026 .0080 .628

1.2 -.005 .0055 -.224 1.3 -. 013 .0014 -1.904

TABLE 3. FAIRED EXPERIMENTAL VALUES OF PROPELLER PERFOR4ANCE
CORIECTED FOR TUNNEL WALL EFFECT FOR DTNSRDC PROPELLER 4133

.2 .523 .0894 .16

.3 .467 .0805 .277

.4 .411 .0717 .365

.5 .354 .0628 .449

.6 .296 .0536 .526

.7 .237 .0445 .593

.8 .182 .0361 .643

.9 .130 .0282 .660

1.0 .079 .0208 .603

1.1 .026 .0135 .357

1.2 -. 024 .0062 -. 7M



tALS 4. FAIRED EXPERIMENTAL VALUES OF PROPELLER PERFORMANCE
CORRECTED FOR TUNNEL WALL EFFECT FOR DTSRDC PROPELLFER 4143.

i ITRyr

.2 .419 .0629 .212

.3 .373 .0568 .314

.4 .323 .0506 .412

.5 .262 .0445 .305

.6 .236 .0383 .588

.7 .190 .0323 .656

.8 .168 .0267 .704

.9 .110 .0217 .724

1.0 .071 .0167 .662

1.1 .032 .0116 .487

1.2 -. 007 .0065 .214

TARLE 5. PAIRED EXPERIMENTAL VALUES OF PROPELLER PERFORMANCE
CORRECTED FOR TUNNEL WALL EFFECT FOR 12 x 8 STOCK PROPELLER.

.1 .266 .0294 .144

.2 .229 .0264 .281

.3 .192 .0226 .406

.4 .192 .0190 .510

.5 .113 .0154 .582

.6 .074 .0116 .605

.7 .030 .0072 .462

.3 -. 016 .0025 -. 839



B. Measurement of Tip Vortex Trajectories

The MIT Variable Pressure Water Tunnel is particularly

well suited for the measurement of propeller tip vortices,

due to its square test section, with one long unobstructed

plexiglass window on each side. The propeller can be located

in the forward portion of the test section, thus leaving

sufficient distance downstream for observation of the tip

vortices. The tunnel pressure can be adjusted to provide

the minimum amount of tip vortex cavitation to permit observation.

The initial experiment conducted by Loukakis [12] was done,
of necessity, in the simplest possible way. A sighting device

was made by gluing together three plastic drafting triangles.

This device was held firmly against the test section window,

and the tip vortices were traced by sighting along the edge of

the device normal to the window.

For the present study, an improved sighting instrument

was devised. This consisted of a ten-power telescopic sight

attached to a drafting machine which, in turn, was securely

attached to the tunnel test section. The telescopic sight

could be moved along a tip vortex with great precision, and

the horizontal and vertical coordinates of a set of points

could be read directly on the drafting machine scales. A

photograph of this equipment in operation appears in Figure 2.

With the telescope centered on a vortex, it was immediately

apparent that tunnel pressure could be changed considerably

before any alteration in the position of the vortex occurred.

The data was analysed by fitting the best least-squares

helix through the measured points. This is equivalent to the

problem of obtaining the amplitude and phase of a harmonic

function of unknown wave length. The procedure is to assume

the wavelength, i.e. the pitch of the helix, solve for the
amplitude and phase of the fundamental by the usual technique

7
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Figure 2. -Photograph of telescopic sighting device for the
measurement of tip vortex trajectories.



of discrete harmonic analysis, and compute the mean-squared

error. The wave-length is then altered slightly, and the

harmonic analysis and error calculation is repeated. An

iterative procedure is then followed to determine the wavelength

for minimum error.

A typical computer output is shown in Figure 3. This

consistsoof a tabulation of input coordinates, a plot of the

original data together with the least-squares helix, and a

tabulation of the final pitch, radius and phase of the helix.

In almost all cases, the helix provided an extremely close

approximation to the measured data.

It was found that the accuracy of these measurements was

very dependent upon the quality of the propeller models. If

the blades were not all identical, the wake would become progres-

sively more distorted downstream. The hub vortex, in this case,

would not remain on the axis, but would be attracted towards

one tip vortex, and in the process would develop a helical shape

with increasing radius. Eventually, this would cause complete

breakdown of the original tip vortices.

While some laboratory model propellers tested were far

more symmetrical, the differences in pitch of the tip vortices

from each blade could readily be measured. Some models were

clearly superior to others in this respect. This effect was

particularly noticeable for the stock motorboat propeller, where

one would not expect laboratory standard tolerances.

To obtain the best average value of the ultimate wake pitch

and radius, measurements were made of the tip vortex from each

blade set at both zero and ninety degrees by means of the

phase of the strobe-light.

The results are given in Figures 4-7 for a series of four

three-bladed propellers designed by DTNSRDC [14]. The curve

labeled "initial pitch" is the axial distance from the tip of

the blade to the first revolution of the tip vortex. The

8
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ultimate pitch PW , is the pitch of the tip vortex measured

as far downstream in the test section as possible. At the

design advance coefficient, J= 0.833 , the average initial

pitch was three percent less than the ultimate pitch. This

extremely small difference is one indication that vortex sheet

roll-up is extremely rapid, and that one does not have to proceed

very far downstream to reach the ultimate wake.

The two dotted lines plotted in Figures 4-7 are, respectively,

the pitch of the undisturbed flow

Po = 2nr tans , (1)

and the pitch of the tip vortex in accordance with the theory

of moderately loaded propellers

Pi = 27nr tan 8 . (2)

The latter was obtained from a lifting-line theory calculation

with the measured thrust as input, assuming that the radial

distribution of circulation was optimum.

In all cases, the ultimate wake pitch falls almost exactly

midway between these two limits.

The ultimate wake radius is plotted at the bottom of

Figures 4-7 and can be seen to be essentially independent of

propeller loading, with a mean value of 83% of the propeller

radius. Subsequent observations of a number of propellers with

varying geometry and number of blades have been made, and the

ultimate wake radius is generally very close to 83%. However,

at extremely high trust coefficients, one can observe a dependence

of ultimate wake radius on loading, with values falling below

83%. Some indication of this trend is apparent from Figures

* - 4-7.
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Figure 5
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Figure 6
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IV. COMPUTATION OF THE ULTIMATE WAKE PITCH

A. Discrete Helical Vortices

It is assumed that all vorticity rolls up into discrete

tip vortices and a hub vortex, in a relatively short distance

behind the propeller. In the ultimate wake, we then have a

flow consisting of set of infinite helical vortex cores, and

an infinite straight hub vortex core. The core radius, rc ,

is assumed to be known.

The self-induced velocity of a set of K infinite helical

vortex can be expressed as follows,

U u r ,K) !_a a w c Rw

ut = ut(Ow, rc, K) Rw (3)

where Rw  is the radius of the helix, with pitch

Pw = 2 7rRw tan8 w . (4)

r is the circulation, and rc is the core radius non-dimension-
alized on the radius of the helix. The functions u and u

a t

contain a logarithmic singularity as rc + 0 , so that the

assumption of a finite core size is essential.

Numerical values for u and u may be computed in

two parts. The part of the helix close to the point where we
are computing the velocity is approximated by a segment of a

circular vortex with radius equal to the radius of curvature

of the helix. As shown, for example, by Lamb [15], this yields

a velocity normal to the helix of magnitude

10



r log 1.576 RR) (5)

where 20 is the included angle of the segment, and RR is

the radius of the tangent ring,

RR = Rw/CoS 2 0W . (6)

The velocity induced by the rest of the first helix, and from

the entire remaining K-1 helices, may be obtained by numerical

integration of the usual Biot-Savart Law integral for zero core

size. Numerical experimentation indicates that the answer is

insensitive to the choice of 20 when the length of the ring

segment is varied from 4-20 times the core radius.

Calculations of U a and jt for various values of w i,

rc and K are given by Loukakis [12] in Tables 6-7 and Figures

8-9, which are reproduced here.

The hub vortex induces a tangential velocity, independent

of core size

t -Krt Rw . (7)

The requirement that the tip vortex helix be a streamline

leads to the following equation for w :

tan OW VA + Ua(Ow, rc, K) * (8)-Kr +w -Kr . 8)fRw  p; + aut( w, r c , K) • r/R w

The ultimate wake pitch may therefore be computed by an
iterative procedure from (8) once the wake radius and core

size is given. Loukakis [12] has shown that if the propeller

thrust is known, a momentum balance can be used to obtain one

more relationship between pitch and radius, thus permitting a

solution for both quantities. However, we can avoid this

11
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complication if we are willing to assume a value for ultimate

wake radius at the outset. On the basis of our experiments,

it would seem that this could be assumed to be 83% of the
propeller radius for all applications to light or moderately

loaded propellers.

In either case, we must still assume a core radius. The
sensitivity of this variable can be judged from Loukakis'

calculations plotted in Figures 8-9 for assumed values of core
radius ranging from one to ten percent of the vortex radius.

Since the contribution of only one blade is affected, precise

knowledge of the actual core radius is not critical, particularly

for propellers with large numbers of blades.
To compare results obtained in this way with the experiments,

it is necessary to make allowance for the influence of the tunnel
walls on the pitch and radius of the ultimate wake.

An estimate of the change in pitch can be made by considering

the backflow velocity induced by the tunnel walls, This backflow
evaluated in the plane of the propeller is the basis for cor-
recting the advance coefficient in the tunnel to match that of

an open-water test. This correction was derived for an actuator
disc by Glauert [16]. B. D. Cox [17] computed the backflow
for a lifting-surface representation of the propeller using the

MIT field point program, and found that for the large clearances
present in a usual tunnel test that the results were essentially

the same. The classical Glauert correction has therefore been
built-in to the propeller data reduction program used at MIT.

The corrected tunnel advance coefficient equalizes the
inflow in the plane of the propeller in the tunnel and in

open water. However, since the backflow velocity doubles
downstream, the pitch of the ultimate wake will be reduced by

the ratio of this change in backflow to the velocity in the
plane of the propeller. This correction, which is a function

of propeller-loading, may be obtained from the processed

performance data.

1
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An estimate of the influence of the tunnel walls on the

radius of the ultimate wake can also be made by comparing the

results of an actuator disc in an unlimited fluid with an

actuator disc in an infinite cylinder. The following results

are obtained for a 12-inch diamter propeller in a 20x20

inch test section with a thrust coefficient CT = 0.565

Actuator Disc in Unlimited Fluid Rw/R = 0.95

" fl in a Tunnel = 0.96

Observed in Tunnel = 0.83

While the tunnel walls inhibit slipstream contraction slightly,

this influence is negligible in comparison with the influence

of vortex roll-up, and is therefore not considered further.

B. Ultimate Wake Pitch Determined from Actuator Disc Theory

While the actuator disc does not provide a suitable

estimate of ultimate wake radius due to vortex roll-up, it can

provide an extremely simple estimate of the pitch. We can

consider the actuator disc to be represented by a tube of ring

vortices proceeding downstream from the plane of the disc.

It can be shown from energy considerations that this vorticity

must be convected at the average of the slipstream velocity

and the free-stream velocity.

If we assume that this convection velocity is the same

for a propeller with a finite number of blades operating at

an advance coefficient, J , we obtain the simple expression

for the pitch of the ultimate wake

P w [P + ++ CTD 2 (9)

13 _



This expression becomes indeterminate at J= 0. However, if

we express propeller loading in terms of KT rather than CT ,

we obtain the limit of (9) at static thrust

14



V. RESULTS

A summary of measured and calculated results for the

DTNSRCD three-bladed propeller series is given in Table 8.

Two advance coefficients were considered; the design value of

J = 0.833, and a lower value of 0.6. The latter results in a

thrust coefficient, CT , of about three times the design value.

At the low advance coefficient, the simple actuator disc

formula (10) predicts values of the ultimate wake pitch which

are about 89 percent of the measured values, corrected to

open water. The pitch predicted from equilibrium of the

ultimate wake (8) overestimates the measured value of around

three percent for an assumed core radius of 1/50 of the propeller

radius.

The sensitivity of the calculated result to core radius

is seen to be very weak. An assumed core radius of 1/10

decreases the predicted pitch by three percent, thus coinciding

almost exactly with the measured value. However, one can find

no physical justification for such a large core radius, except

for the possible argument that this allows for the lack of

complete roll up of the initial vortex sheet into Ohe core.

At the design advance coefficient, the actuator disc

formula again under predicts the pitch, although the results

are about 95 percent of the measured values. The pitch predicted

from the ultimate wake model is again slightly high.

The results for the stock motorboat propeller are given

in Table 9. The trends are remarkably similar to those of

Table 8, with the actuator disc approximation slightly under-

predicting the measured pitch, and the ultimate wake model



slightly over-predicting its value. The fact that reasonable
results are obtained at high values of the propeller thrust
coefficient is encouraging.

i



Open Water J - 0.6,

Tunnel J = 0.648 MODEL NUMBERS
lri ..960 4118 4132 4133 4143

Measured CT in Tunnel 1.82 1.60 2.09 1.67

Measured Pw/D in Tunnel .850 .828 .870 .791

Measured Pw/D - corrected to open .918 .894 .940 .854
water

Calculated Pw/D - Actuator Disc .804 .784 .828 .790
Calculated Pw/D - Ultimate Wake

rc = 1/50 .949

Calculated Pw/D - rc = 1/25 .933

Calculated Pw/D - r = 1/10 .912C

Open Water J = 0.833
(DESIGN)

Tunnel J = 0.862 MODEL NUMBERS

ni = 1.041 4118 4132 4133 4143

Measured CT in Tunnel .576 .561 .606 .495

Measured Pw/D in Tunnel .958 .963 .960 .933

Measured Pw/D - corrected to open .991 .996 .993 .965
water

Calculated Pw/D - Actuator Disc .939 .937 .944 .926

Calculated Pw/D - Ultimate Wake 1.029r ffi 1/50

Calculated Pw/D - rc = 1/25 1.019

Calculated Pw/D - rc = 1/10 1.006

Table 8. Summary of measured and calculated results for DTNSRDC 3-blade propeller
series.



OPEN WATER J

.348 .438 .544 .577

Measured CT in Tunnel 3.650 1.815 .824 .640

Measured Pw/D in Tunnel .558 .584 .655 .651

Measured Pw/D - corrected to open .632 .633 .685 .673
water

Calculated Pw/D - Actuator Disc .549 .587 .639 .658

Lifting Line ir\ .625 .651 .687 .701

~Ultimate Wake
Calculated Pw/D - Ultiat .666

r = 1/10

Measured r /R .821 .803 .803 .830
w

Table 9. Summary of measured and calculated results for 12x 8 stock propeller.

...



VI. APPLICATION TO PROPELLER LIFTING-SURFACE DESIGN

The propeller blade section design computer program

designated MIT-PBD-9 [7] was written with the provision for

modification of the trajectory of the wake vortices. The

wake model developed in the present work has been incorporated

in a version of this program designated PDB-A.

The transition wake is defined by a set of discrete

vortices originating at each grid point on the trailing edge

proceeding to specified hub and tip "roll-up points". The

radius, as a function of angular position, is simply assumed to

be two parabolic segments with zero slope both at the trailing

edge and at the roll-up point. The pitch of each element is

uniquely determined from the differences in angular and axial

coordinates of the trailing edge starting point and the

roll-up point.

Downstream of the roll-up point, the system of discrete

vortices degenerates to a single helical vortex from each blade,

and an axial hub vortex. This, of course, is simpler from a

computational point of view than the usual numerical represent-

ation of a complete helical vortex sheet.

A hypothetical propeller with a blade outline identical

to 4118, but with a design of J of 0.6 and a design CT of

1.816 was designed using both PBD-9 and PBD-A, and the results

are given in Table 10.



PITCH RATIO CAMBER RATIO

P/D fo/C

i ~ WAKE DEFORMED ~ iWAKE DEFORMED
r/R (PBD -9) WAKE (PBD-A) (PBD -9) WAKE (PBD-A)

.3 .912 .949 .0240 .0259

.5 .990 1.008 .0347 .0348

.7 1.011 1.009 .0345 .0342

.9 .996 .978 .0354 .0352

.95 .996 .976 .0431 .0428

Table 10. Influence of wake deformation on computer pitch and
camber



The results labelled "0i WAKE" correspond to a helical

wake with a constant pitch/diameter ratio of 0.960 determined

by a Lerbs induction factor method lifting-line computer

program. The results labelled "DEFORMED WAKE" correspond to

a rolled-up wake with a pitch/diameter ratio of 0.849 and

a radius of 83% of the propeller radius. The roll-up point

was specified to have an axial coordinate of 41% of the

propeller radius and an angular coordinate of 900 from the

blade tip.

The tabulated results indicate that the influence of

wake deformation on blade shape, for a specified circulation

distribution, is small. Furthermore, the efficiencies for

the two cases computed by integration of forces on the blade

in accordance with the procedure outlined in [7J were

essentially identical.

This would indicate that there is no particular reason

to depart from the classical moderately loaded wake model for

the purpose of lifting-surface design computations.

*1
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